13,008 research outputs found

    Supersonic Flow onto Solid Wedges, Multidimensional Shock Waves and Free Boundary Problems

    Full text link
    When an upstream steady uniform supersonic flow impinges onto a symmetric straight-sided wedge, governed by the Euler equations, there are two possible steady oblique shock configurations if the wedge angle is less than the detachment angle -- the steady weak shock with supersonic or subsonic downstream flow (determined by the wedge angle that is less or larger than the sonic angle) and the steady strong shock with subsonic downstream flow, both of which satisfy the entropy condition. The fundamental issue -- whether one or both of the steady weak and strong shocks are physically admissible solutions -- has been vigorously debated over the past eight decades. In this paper, we survey some recent developments on the stability analysis of the steady shock solutions in both the steady and dynamic regimes. For the static stability, we first show how the stability problem can be formulated as an initial-boundary value type problem and then reformulate it into a free boundary problem when the perturbation of both the upstream steady supersonic flow and the wedge boundary are suitably regular and small, and we finally present some recent results on the static stability of the steady supersonic and transonic shocks. For the dynamic stability for potential flow, we first show how the stability problem can be formulated as an initial-boundary value problem and then use the self-similarity of the problem to reduce it into a boundary value problem and further reformulate it into a free boundary problem, and we finally survey some recent developments in solving this free boundary problem for the existence of the Prandtl-Meyer configurations that tend to the steady weak supersonic or transonic oblique shock solutions as time goes to infinity. Some further developments and mathematical challenges in this direction are also discussed.Comment: 19 pages; 8 figures; accepted by Science China Mathematics on February 22, 2017 (invited survey paper). doi: 10.1007/s11425-016-9045-

    Weak Continuity and Compactness for Nonlinear Partial Differential Equations

    Full text link
    We present several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. We first focus on the compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropy flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multidimensional steady compressible fluids. We then analyze the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.Comment: 29 page

    Transonic Flows with Shocks Past Curved Wedges for the Full Euler Equations

    Full text link
    We establish the existence, stability, and asymptotic behavior of transonic flows with a transonic shock past a curved wedge for the steady full Euler equations in an important physical regime, which form a nonlinear system of mixed-composite hyperbolic-elliptic type. To achieve this, we first employ the coordinate transformation of Euler-Lagrange type and then exploit one of the new equations to identify a potential function in Lagrangian coordinates. By capturing the conservation properties of the Euler system, we derive a single second-order nonlinear elliptic equation for the potential function in the subsonic region so that the transonic shock problem is reformulated as a one-phase free boundary problem for a second-order nonlinear elliptic equation with the shock-front as a free boundary. One of the advantages of this approach is that, given the shock location or quivalently the entropy function along the shock-front downstream, all the physical variables can expressed as functions of the gradient of the potential function, and the downstream asymptotic behavior of the potential function at the infinite exit can be uniquely determined with uniform decay rate. To solve the free boundary problem, we employ the hodograph transformation to transfer the free boundary to a fixed boundary, while keeping the ellipticity of the second-order equations, and then update the entropy function to prove that it has a fixed point. Another advantage in our analysis here is in the context of the real full Euler equations so that the solutions do not necessarily obey Bernoulli's law with a uniform Bernoulli constant, that is, the Bernoulli constant is allowed to change for different fluid trajectories.Comment: 35 pages, 2 figures in Discrete and Continuous Dynamical Systems, 36 (2016

    Stability of Attached Transonic Shocks in Steady Potential Flow past Three-Dimensional Wedges

    Full text link
    We develop a new approach and employ it to establish the global existence and nonlinear structural stability of attached weak transonic shocks in steady potential flow past three-dimensional wedges; in particular, the restriction that the perturbation is away from the wedge edge in the previous results is removed. One of the key ingredients is to identify a "good" direction of the boundary operator of a boundary condition of the shock along the wedge edge, based on the non-obliqueness of the boundary condition for the weak shock on the edge. With the identification of this direction, an additional boundary condition on the wedge edge can be assigned to make sure that the shock is attached on the edge and linearly stable under small perturbation. Based on the linear stability, we introduce an iteration scheme and prove that there exists a unique fixed point of the iteration scheme, which leads to the global existence and nonlinear structural stability of the attached weak transonic shock. This approach is based on neither the hodograph transformation nor the spectrum analysis, and should be useful for other problems with similar difficulties.Comment: 28 Pages; 2 figure

    Global Solutions of Shock Reflection by Large-Angle Wedges for Potential Flow

    Full text link
    When a plane shock hits a wedge head on, it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. Experimental, computational, and asymptotic analysis has shown that various patterns of shock reflection may occur, including regular and Mach reflection. However, most of the fundamental issues for shock reflection have not been understood, including the global structure, stability, and transition of the different patterns of shock reflection. Therefore, it is essential to establish the global existence and structural stability of solutions of shock reflection in order to understand fully the phenomena of shock reflection. On the other hand, there has been no rigorous mathematical result on the global existence and structural stability of shock reflection, including the case of potential flow which is widely used in aerodynamics. Such problems involve several challenging difficulties in the analysis of nonlinear partial differential equations such as mixed equations of elliptic-hyperbolic type, free boundary problems, and corner singularity where an elliptic degenerate curve meets a free boundary. In this paper we develop a rigorous mathematical approach to overcome these difficulties involved and establish a global theory of existence and stability for shock reflection by large-angle wedges for potential flow. The techniques and ideas developed here will be useful for other nonlinear problems involving similar difficulties.Comment: 108 page

    Solutions for a Nonlocal Conservation Law with Fading Memory

    Full text link
    Global entropy solutions in BVBV for a scalar nonlocal conservation law with fading memory are constructed as limits of vanishing viscosity approximate solutions. The uniqueness and stability of entropy solutions in BVBV are established, which also yield the existence of entropy solutions in L∞L^\infty while the initial data is only in L∞L^\infty. Moreover, if the memory kernel depends on a relaxation parameter \de>0 and tends to a delta measure weakly as measures when \de\to 0+, then the global entropy solution sequence in BVBV converges to an admissible solution in BVBV for the corresponding local conservation law.Comment: 11 pages. Proceedings of American Mathematical Society, 2006 (to appear

    Stability of Transonic Shocks in Steady Supersonic Flow past Multidimensional Wedges

    Full text link
    We are concerned with the stability of multidimensional (M-D) transonic shocks in steady supersonic flow past multidimensional wedges. One of our motivations is that the global stability issue for the M-D case is much more sensitive than that for the 2-D case, which requires more careful rigorous mathematical analysis. In this paper, we develop a nonlinear approach and employ it to establish the stability of weak shock solutions containing a transonic shock-front for potential flow with respect to the M-D perturbation of the wedge boundary in appropriate function spaces. To achieve this, we first formulate the stability problem as a free boundary problem for nonlinear elliptic equations. Then we introduce the partial hodograph transformation to reduce the free boundary problem into a fixed boundary value problem near a background solution with fully nonlinear boundary conditions for second-order nonlinear elliptic equations in an unbounded domain. To solve this reduced problem, we linearize the nonlinear problem on the background shock solution and then, after solving this linearized elliptic problem, develop a nonlinear iteration scheme that is proved to be contractive.Comment: 41 pages, 10 figure

    Vanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow

    Full text link
    We establish the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. For the Navier-Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup-norm of solutions with respect to the physical viscosity coefficient may not be directly controllable and, furthermore, convex entropy-entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy-type estimates with respect to the viscosity coefficient for the solutions of the Navier-Stokes equations and establish the existence of measure-valued solutions of the isentropic Euler equations generated by the Navier-Stokes equations. Based on the uniform energy-type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier-Stokes equations for weak entropy-entropy flux pairs, generated by compactly supported C2C^2 test functions, are confined in a compact set in Hβˆ’1H^{-1}, which lead to the existence of measure-valued solutions that are confined by the Tartar-Murat commutator relation. A careful characterization of the unbounded support of the measure-valued solution confined by the commutator relation yields the reduction of the measure-valued solution to a Delta mass, which leads to the convergence of solutions of the Navier-Stokes equations to a finite-energy entropy solution of the isentropic Euler equations.Comment: 30 page
    • …
    corecore